d-spacings

APPENDIX 1

LATTICE GEOMETRY

A1-1 Plane spacings. The value of d, the distance between adjacent planes in the set (hkl), may be found from the following equations.

Cubic:	$rac{1}{d^2} = rac{h^2 + k^2 + l^2}{a^2}$	for aluminum
Tetragonal:	$\frac{1}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$	
Hexagonal:	u o v u /	$\frac{l^2}{c^2}$ for graphite
Rhombohedral	<i>l</i> :	
$\frac{1}{d^2} = \frac{(d^2)^2}{d^2}$	$\frac{h^2 + k^2 + l^2)\sin^2 \alpha + 2(hk + kl + l)}{a^2(1 - 3\cos^2 \alpha + 2\cos^2 \alpha^2 \alpha + 2\cos^2 \alpha^2 \alpha^2 \alpha^2 \alpha^2 \alpha^2 \alpha^2 \alpha^2 \alpha^2 \alpha^2 \alpha$	$\frac{hl}{\cos^3\alpha} - \cos\alpha$
Orthorhombic:	$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}$	
Monoclinic:	$\frac{1}{d^2} = \frac{1}{\sin^2 \beta} \left(\frac{h^2}{a^2} + \frac{k^2 \sin^2 \beta}{b^2} + \frac{l^2}{c^2} - \frac{k^2 \sin^2 \beta}{c^2} + k^2 \sin^2$	$-\frac{2hl\coseta}{ac}\Big)$
Triclinic: $\frac{1}{d^2}$	$\frac{1}{2} = \frac{1}{V^2} \left(S_{11}h^2 + S_{22}k^2 + S_{33}l^2 + 2 \right)$	$S_{12}hk + 2S_{23}kl + 2S_{13}hl$
In the equati	on for triclinic crystals	
	V = volume of unit cell (s	ee below),
	$S_{11} = b^2 c^2 \sin^2 \alpha,$	
	$S_{22} = a^2 c^2 \sin^2 \beta,$	
	$S_{33} = a^2 b^2 \sin^2 \gamma,$	
	$S_{12} = abc^2(\cos\alpha\cos\beta - \cos\alpha)$	s γ),

$$S_{23} = a^2 b c (\cos \beta \cos \gamma - \cos \alpha),$$

$$S_{13} = ab^2 c(\cos\gamma\cos\alpha - \cos\beta)$$
459

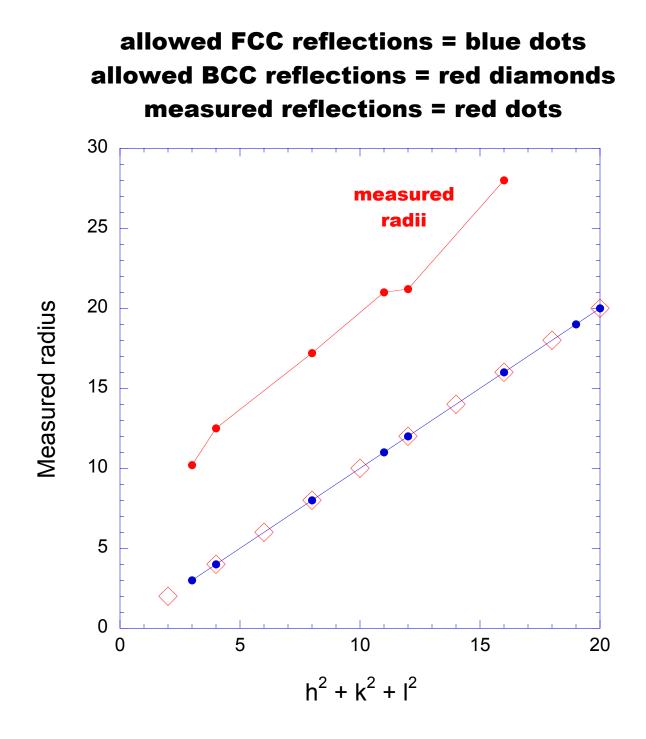
allowed fcc

APPENDIX 6

allowed hexagonal

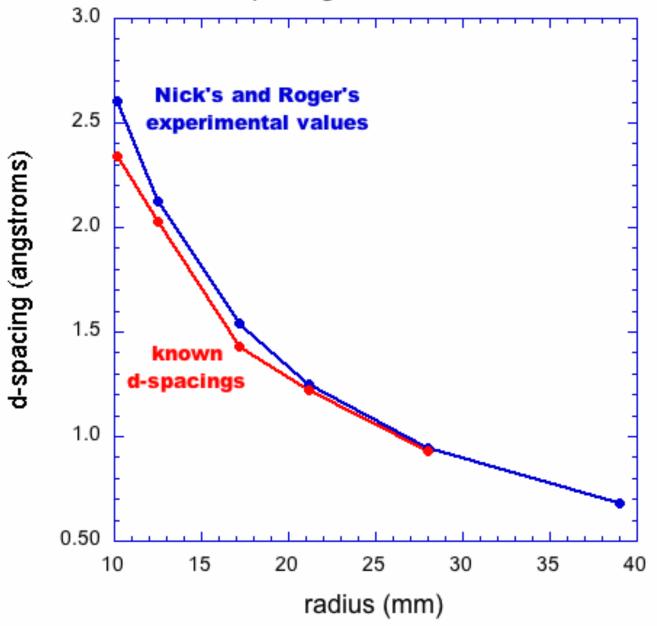
QUADRATIC FORMS OF MILLER INDICES

		Cubic			Hexagon	al 📘
		hkt				
$h^2 + k^2 + l^2$	Simple	Face- centered	Body- centered	Diamond	$h^2 + hk + k^2$	hk
1	100	7			1	10
2	110		110	1	2	
3	111	111		111	3	11
4	200	200	200		4	20
5	210				5 6	
6	211		211		6	
7	000	220	000	220	7 8	21
8 9	220 300, 221	220	220	220	9	30
10	310		310		10	
11	311	311	• • •	311	11	
12	222	222	222		12	22
13	320		201		13	31
14	321	• • •	321		14 15	
15 16	400	400	400	400	16	40
17	410, 322	400	400	400	17	40
18	411, 330		411, 330		18	1
19	331	331		331	19	32
20	420	420	420		20	
21	421				21	41
22	332		332		22	
23	400	(22	400	400	23	
24 25	422 500, 430	422	422	422	24 25	50
26	510, 431		510, 431		26	50
27	511, 333	511, 333		511, 333	27	33
28	,	,		,	28	42
29	520, 432				29	
30	521		521		30	
31 32	440	440	440	440	31 32	51
32	522, 441				33	
34	530, 433		530, 433		34	
35	531	531		531	35	
36	600, 442	600, 442	600, 442		36	60
37	610	-			37	43
38	611, 532		611, 532		38	
39					39	52
40	620	620	620	620	40	
41	621, 540, 443				41	
42	541		541		42	
43	533	533		533	43	61
44	622	622	622		44	
45 46	630, 542		431		45 46	
40 47	631		631		40 47	
48	444	444	444	444	47	44
49	700, 632				49	70, 53

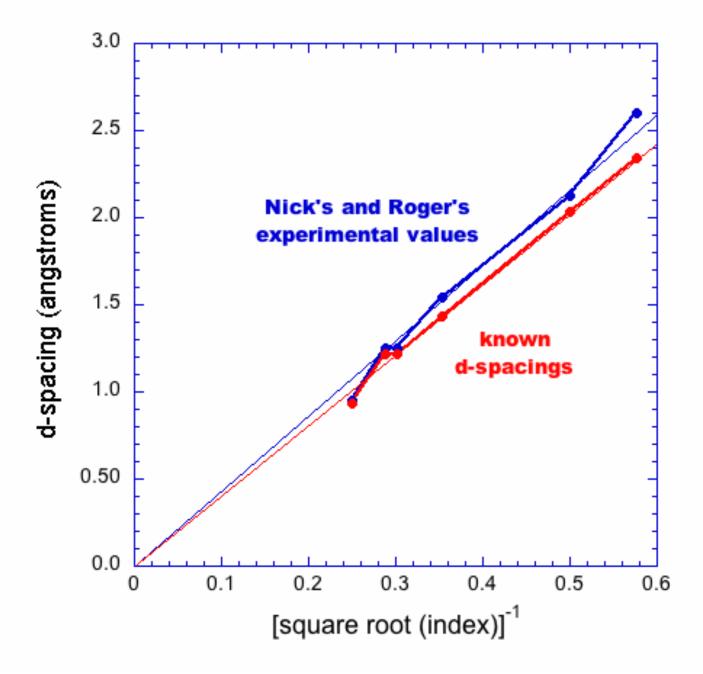

(cont.)

h	k	l	h^2 + k^2 + l^2	d(hkl) calculated
1	1	1	3	2.338
2	0	0	4	2.025
2	2	0	8	1.432
4	0	0	16	1.012
3	3	1	19	0.929
4	2	0	20	0.906

calculated d-spacings for aluminum


aluminum intensities ReciprOgraph - Al

0	0	0	i	aiumin	um in	tensities	Re	ciprOgraph –	AI
_						Single crys	tal Pov	vder diagram	Structure factors
						Shigie erys	101		Structure factors
1	h	k	1	d(hkl)	2-Theta	F(re)	F(IM)	F 2	
	3	3 3	3	0.7793	79.825	17.41	0.00	303.10	
	3	3	1	0.9290	65.127	21.24	0.00	451.11	weak
	3	3	-1	0.9290	65.127	21.24	0.00	451.11	
	3	3	-3	0.7793	79.825	17.41	0.00	303.10	
	3	1	3 1	0.9290 1.2209	65.127 48.351	21.24 26.63	0.00	451.11 709.15	
	3	1	-1	1.2209	48.351	26.63	0.00	709.15	
	3	3 1 1 1 1	-3	0.9290	65.127	21.24	0.00	451.11	
	3 .	-1	3	0.9290	65.127	21.24	0.00	451.11	
	3.	-1	3 1	1.2209	48.351	26.63	0.00	709.15	
	3 .	-1	-1	1.2209	48.351	26.63	0.00	709.15	
	3.	-1	-3	0.9290	65.127	21.24	0.00	451.11	
	3,	-3 -3	3 1	0.7793 0.9290	79.825 65.127	17.41 21.24	0.00	303.10 451.11	
	3.	-3	-1	0.9290	65.127	21.24	0.00	451.11	
	3.	-3	-3	0.7793	79.825	17.41	0.00	303.10	
	2	2		1.1689	50.649	25.84	0.00	667.89	
	2	2	0	1.4316	40.883	29.27	0.00	856.51	strong
	2	2 2 2 0	-2	1.1689	50.649	25.84	0.00	667.89	_
	2	0	2	1.4316	40.883	29.27	0.00	856.51	strong
	2	0	0	2.0246	28.595	34.04	0.00	1158.43	Saving
	2	0 0 -2	-2	1.4316 1.1689	40.883 50.649	29.27 25.84	0.00	856.51 667.89	
	2	-2 -2	0	1.4316	40.883	29.27	0.00	856.51	
	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2	-2	-2	1.1689	50.649	25.84	0.00	667.89	
	1	-2 3 3 3 1	2 0 -2 2 0 -2 2 0 -2 3	0.9290	65.127	21.24	0.00	451.11	
	1	3	1	1.2209	48.351	26.63	0.00	709.15	
	1	3	-1	1.2209	48.351	26.63	0.00	709.15	
	1	3	-3 3	0.9290	65.127	21.24	0.00	451.11	
	1	1	3	1.2209	48.351	26.63	0.00	709.15	ofrene
	1 1	1 1	1 -1	2.3378 2.3378	24.699 24.699	35.82 35.82	0.00	1283.19 1283.19	strong
	1	1	-3	1.2209	48.351	26.63	0.00	709.15	
	ī.	1	3	1.2209	48.351	26.63	0.00	709.15	
	1 .	-1	1	2.3378	24.699	35.82	0.00	1283.19	
	1 .	-1	-1	2.3378	24.699	35.82	0.00	1283.19	
		-1	-3	1.2209	48.351	26.63	0.00	709.15	
		-3	3	0.9290	65.127	21.24	0.00	451.11	
		-3 -3	1	1.2209	48.351	26.63	0.00	709.15 709.15	
		-3 -3	-1 -3	1.2209 0.9290	48.351 65.127	26.63 21.24	0.00	451.11	
	ō	2	2	1.4316	40.883	29.27	0.00	856.51	
	ō	2	0	2.0246	28.595	34.04	0.00	1158.43	
	0	2	-2	1.4316	40.883	29.27	0.00	856.51	
	0		2	2.0246	28.595	34.04	0.00	1158.43	
	0	0	-2	2.0246	28.595	34.04	0.00	1158.43	
		-2 -2	2 0	1.4316 2.0246	40.883 28.595	29.27 34.04	0.00	856.51 1158.43	
		=2 =2	-2	1.4316	40.883	29.27	0.00	856.51	
		3	3	0.9290	65.127	21.24	0.00	451.11	
-		3	1	1.2209	48.351	26.63	0.00	709.15	
-		3	-1	1.2209	48.351	26.63	0.00	709.15	
-		3	-3	0.9290	65.127	21.24	0.00	451.11	
-		1	3	1.2209	48.351	26.63	0.00	709.15	
		1 1	$^{1}_{-1}$	2.3378 2.3378	24.699 24.699	35.82 35.82	0.00	1283.19 1283.19	
		1	-3	1.2209	48.351	26.63	0.00	709.15	
		-1	3	1.2209	48.351	26.63	0.00	709.15	
-		-1	ĩ	2.3378	24.699	35.82	0.00	1283.19	
-		-1	-1	2.3378	24.699	35.82	0.00	1283.19	
-		-1	-3	1.2209	48.351	26.63	0.00	709.15	
-		-3	3	0.9290	65.127	21.24	0.00	451.11	
		-3 -3	1 -1	1.2209	48.351 48.351	26.63 26.63	0.00	709.15 709.15	
		-3 -3	-1	0.9290	48.351	20.03	0.00	451.11	
		2	2	1.1689	50.649	25.84	0.00	667.89	
-	2	2	ō	1.4316	40.883	29.27	0.00	856.51	
	2	2	-2	1.1689	50.649	25.84	0.00	667.89	
-		0	2	1.4316	40.883	29.27	0.00	856.51	
-		0	0	2.0246	28.595	34.04	0.00	1158.43	
		0 -2	-2 2	1.4316	40.883	29.27 25.84	0.00	856.51	
		-2 -2	0	1.1689 1.4316	50.649 40.883	29.27	0.00	667.89 856.51	
		-2	-2	1.1689	50.649	25.84	0.00	667.89	
-		3	3	0.7793	79.825	17.41	0.00	303.10	
- 1	3	3	1	0.9290	65.127	21.24	0.00	451.11	
-		3	-1	0.9290	65.127	21.24	0.00	451.11	
-		3	-3	0.7793	79.825	17.41	0.00	303.10	
1.0	5	1	3	0.9290	65.127	21.24	0.00	451.11	



aluminum

d-spacing versus radius

aluminum

calculated d-spacings for graphite

h	k	h^2 + hk + k^2	d(hkl) calculated
1	0	1	2.139
1	1	3	1.235
2	0	4	1.070
2	1	7	0.809
3	0	9	0.713
2	2	12	0.618
3	1	13	0.593

For small angles α (cos 10° = 0.985) can put

 $\sin 2\alpha \simeq 2 \sin \alpha \tag{6}$

so that for small angles θ we obtain

 $\sin \alpha = \sin 2\theta \simeq 2 \sin \theta \tag{6a}$

With this approximation we obtain

$$r = \frac{2R}{d} \cdot n \cdot \lambda \tag{7}$$

The two inner interference rings occur through reflection from the lattice planes of spacing d_1 and d_2 (Fig. 4), for n = 1 in (7).

The wavelength is calculated cordance with (3):	from the anode voltage in ac-
$rac{U_{A}}{kV}$	$\frac{\lambda}{pm}$
4.00	19.4

18.3

17.3

16.5

15.2

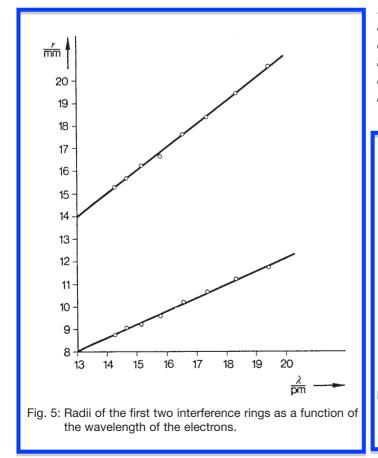
14.7

14.3

Applying the regression lines expressed by

Y = AX + B

4.50


5.00

5.50

6.50

7.00

7.40

to the measured values from Fig. 5 gives a slopes

$$A_1 = 0.62 (2) \cdot 10^9$$

 $A_2 = 1.03 (2) \cdot 10^9$

and the lattice constants

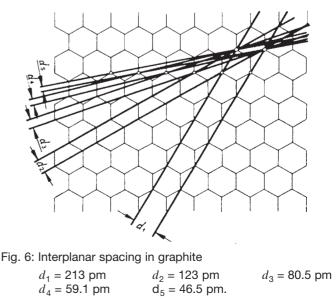
$$d_1 = 211 \text{ pm}$$

 $d_2 = 126 \text{ pm}$

in accordance with (7),

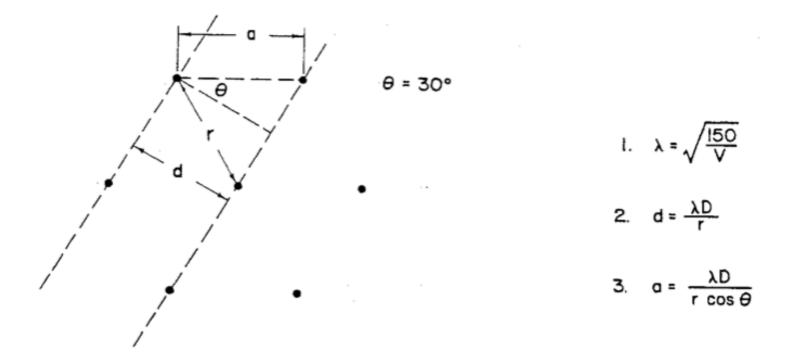
$$rac{T_{\mathrm{i}}}{\lambda} = A_{\mathrm{i}} = rac{2R}{d_{\mathrm{i}}}$$
 and $d_{\mathrm{i}} = rac{2R}{A_{\mathrm{i}}}$.

Notes


- The intensity of higher order interference rings is much lower than that of first order rings. Thus, for example, the second order ring of d_1 is difficult to identify and the expected fourth order ring of d_1 simply cannot be seen. The third order ring of d_1 is easy to see because graphite always has two lattice planes together, spaced apart by a distance of $d_1/3$. (Fig. 6)

In the sixth ring, the first order of ring of d_4 clearly coincides with the second order one of d_2 .

Radii (mm) calculated according to (4) for the interference rings to be expected when $U_{\rm A}$ = 7 kV:


	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 3	<i>n</i> = 4
d_1	8.9	17.7	26.1	34.1
d_2	15.4	29.9		
d_3	23.2			
d_4	31.0			
d_5	38.5			

d-spacings

from the 1, 2, square root of 3 triangle

d = a times (the square root of 3) over 2

d = a cos(30 degrees)

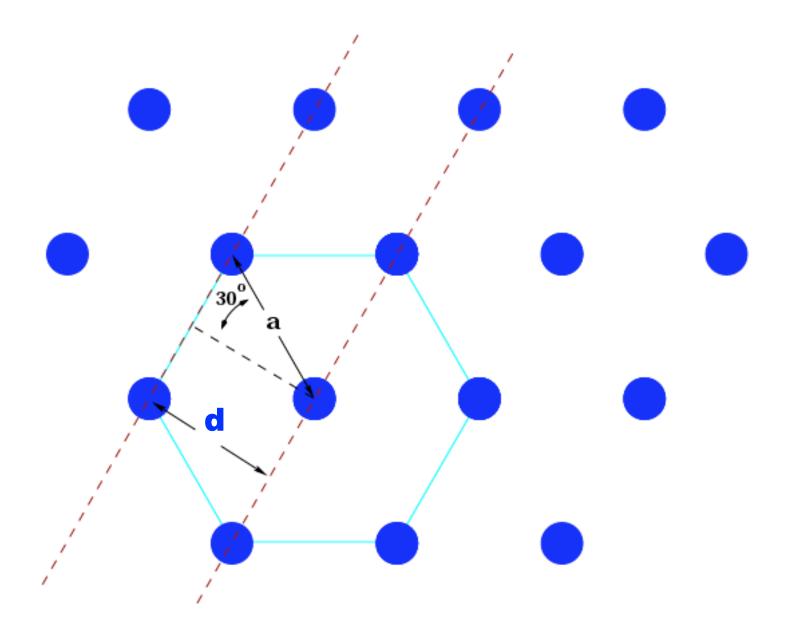


Figure 9 Lattice Plane Spacing of the Fundamental Lattice Planes with the Widest Spacing for Hexagonal Crystal Structures

graphite intensities

000					ReciprOgraph – C
				Single crysta	I Powder diagram Structure factors
h k l	d(hkl)	2-Theta	F(re)	F(Im)	F ²
2 1 2	0.7866	156.801	-1.50	0.00	2.24
2 1 1	0.8028	147.363	-2.62	0.00	6.84
2 1 0 2 1 -1	0.8085	144.729	1.52	0.00	2.30 weak
2 1 -1	0.8028	147.363	2.62	0.00	6.84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7866 1.0203	156.801 98.087	-1.50 -1.70	0.00	2.24 2.90
2 0 2	1.0566	93.649	3.01	0.00	9.07
2 0 0	1.0695	92.175	1.75	0.00	3.07 weak
2 0 -1	1.0566	93.649	-3.01	0.00	9.07
2 0 -2	1.0203	98.087	-1.70	0.00	2.90
2 -1 2	1.1608	83.176	-7.39	0.00	54.58
2 -1 0	1.2350	77.201	7.72	0.00	59.61 Coloulated d appaires and
2 -1 -2	1.1608	83.176	-7.39	0.00	54.58 Calculated d-spacings and
2 -2 2	1.0203	98.087	-1.71	0.00	2.91 9.09 intensities for graphite
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0566	93.649 92.175	-3.01	0.00	9.09 Intensities for graphite 3.08
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0695	92.175	1.75 3.01	0.00	9.09
2 -2 -2	1.0203	98.087	-1.71	0.00	2.91
1 2 2	0.7866	156.801	-1.50	0.00	2.24
1 2 1	0.8028	147.363	2.62	0.00	6.84
1 2 0	0.8085	144.729	1.52	0.00	2.30
1 2 -1	0.8028	147.363	-2.62	0.00	6.84
1 2 -2	0.7866	156.801	-1.50	0.00	2.24
1 1 2	1.1608	83.176	-7.39	0.00	54.58
1 1 0	1.2350	77.201	7.72	0.00	59.61 strong
$ \begin{array}{cccc} 1 & 1 & -2 \\ 1 & 0 & 2 \end{array} $	1.1608 1.8106	83.176	-7.39	0.00	54.58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0405	50.372 44.371	-2.69 -5.20	0.00	7.26 27.06
i ŏ ō	2.1391	42.225	3.13	0.00	9.81
1 0 -1	2.0405	44.371	5.20	0.00	27.06
1 0 -2	1.8106	50.372	-2.69	0.00	7.26
1 -1 2	1.8106	50.372	-2.69	0.00	7.24
1 -1 1	2.0405	44.371	5.20	0.00	27.04
1 -1 0	2.1391	42.225	3.13	0.00	9.79
1 -1 -1	2.0405	44.371	-5.20	0.00	27.04
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8106 1.1608	50.372 83.176	-2.69 -7.39	0.00	7.24 54.58
1 -2 2 1 -2 0	1.2350	77.201	7.72	0.00	59.61
1 -2 0 1 -2 -2	1.1608	83.176	-7.39	0.00	54.58
0 2 2	1.0203	98.087	-1.70	0.00	2.90
0 2 1	1.0566	93.649	-3.01	0.00	9.07
0 2 0	1.0695	92.175	1.75	0.00	3.07
0 2 -1	1.0566	93.649	3.01	0.00	9.07
0 2 -2	1.0203	98.087	-1.70	0.00	2.90
0 1 2 0 1 1	1.8106 2.0405	50.372 44.371	-2.69 5.20	0.00	7.26 27.06
	2.1391	42.225	3.13	0.00	9.81 weak
0 1 -1	2.0405	44.371	-5.20	0.00	27.06
0 1 -2	1.8106	50.372	-2.69	0.00	7.26
0 0 2	3.4000	26.196	-17.43	0.00	303.82
0 0 0	0.0000	0.000	24.00	0.00	575.85
· · ·	~	~~ · · · ·	10.10	~ ~ ~	*** **

3. Experimental Technique

a. Apparatus

The electron diffraction tube is a small cathode ray tube (CRT) similar to that in a small (old-fashioned) TV set. The electrons pass through a target that consists of graphite, only a few molecular layers thick, vapor-deposited on a micromesh nickel grid. The target is crystalline in tiny regions, so a "powder" diffraction pattern results, seen as a pair of rings around a central spot on the luminescent screen. See diagram below. The distance between the target and phosphor screen is L = 13.5 cm.

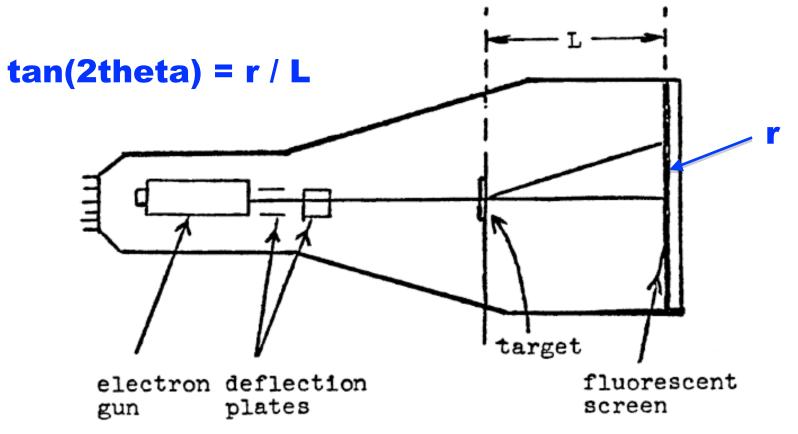
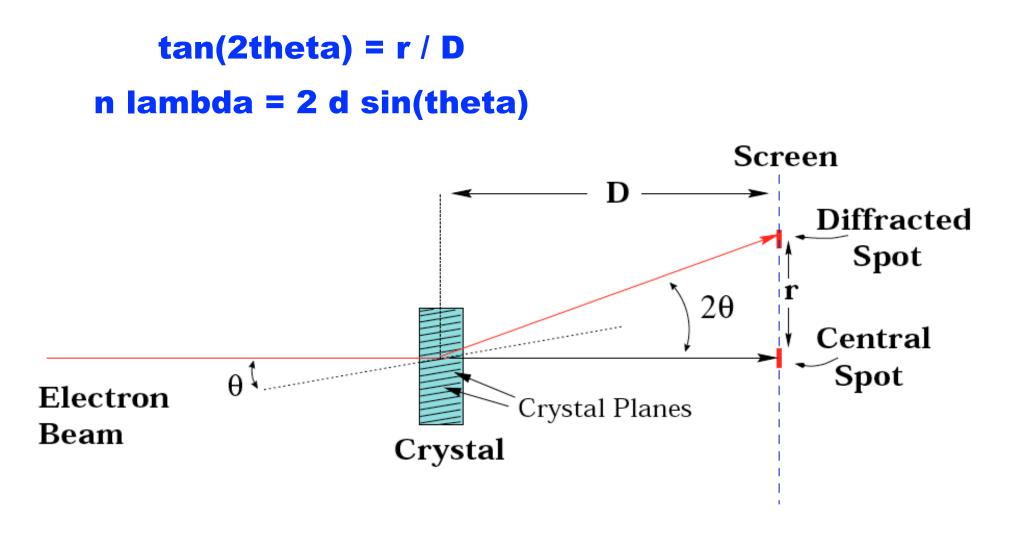
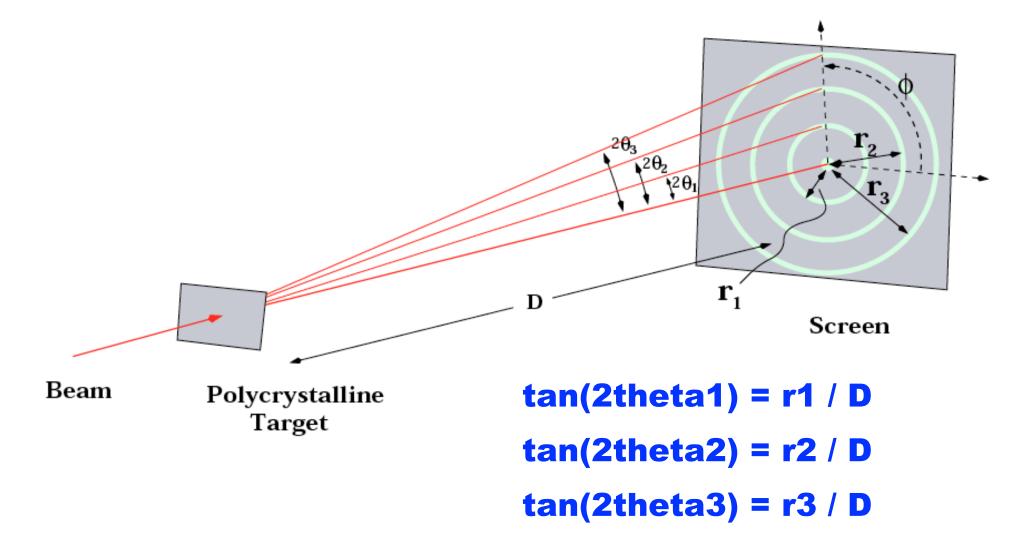
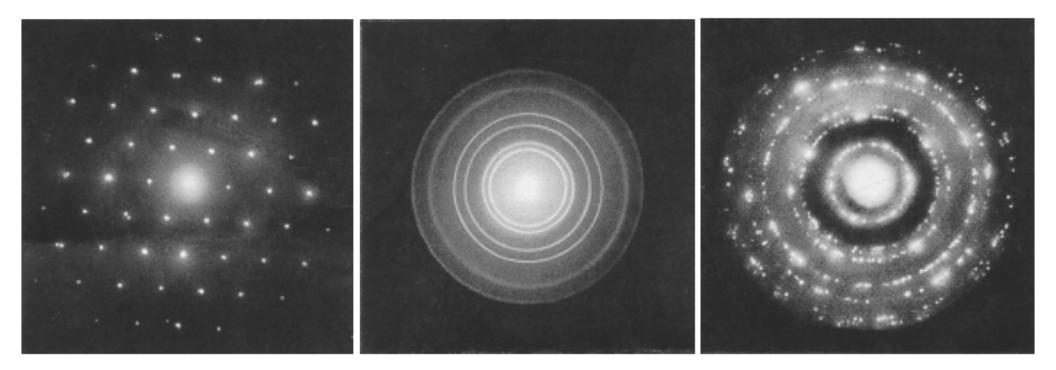
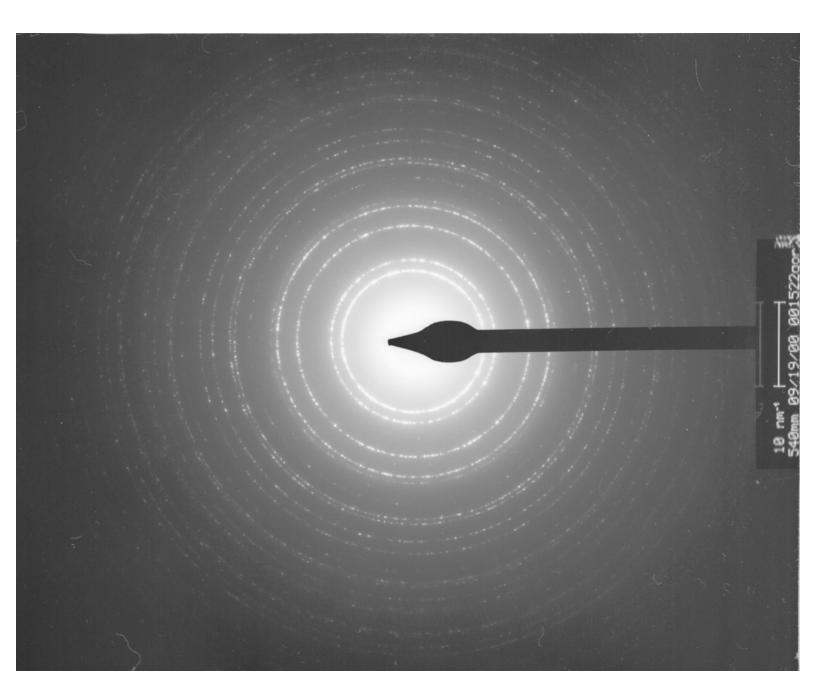


Figure 1 Schematic of the CRT tube

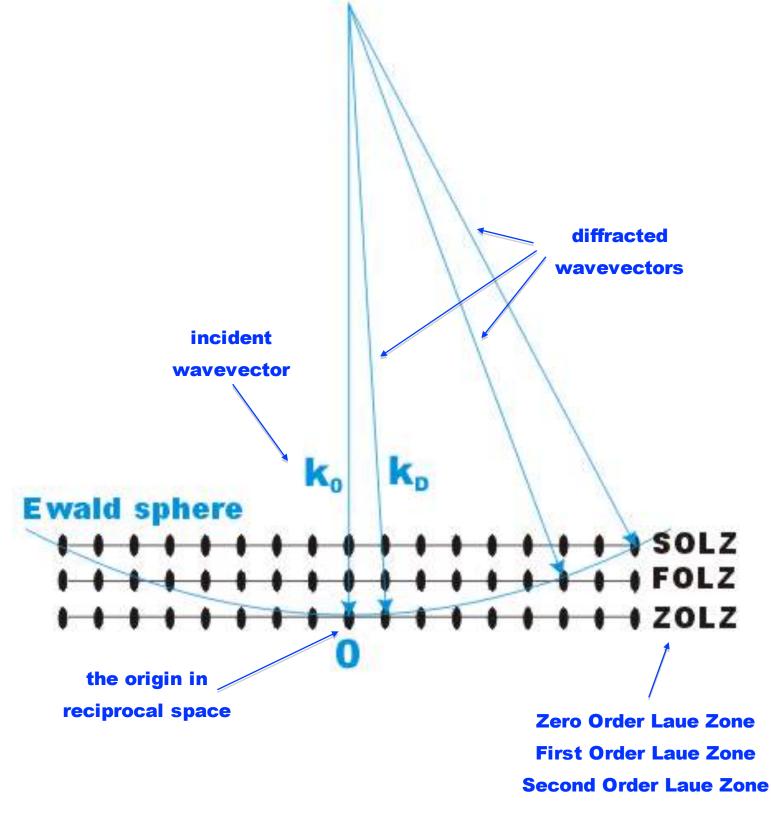




Figure 7 Crystal Diffraction Geometry

The total angle of a diffraction maxima due to reflection off of a particular crystal lattice plane is twice the angle of incidence on that plane. This angle may be approximated as the distance of the diffraction spot from the undiffracted beam over the distance between the imaging screen and the crystal, i.e. $q \approx 1/2 r/D$.

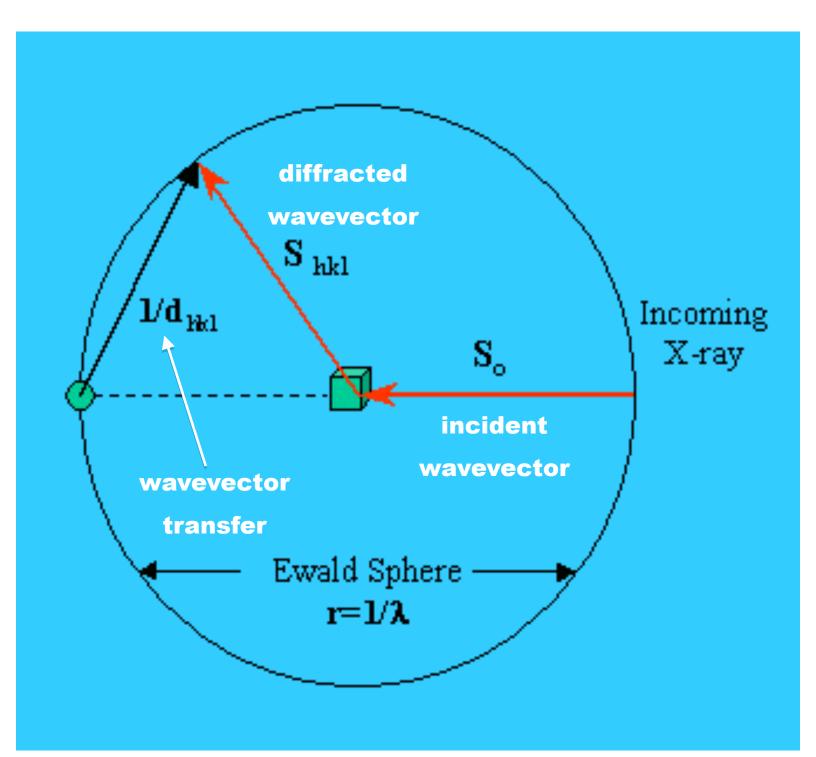


single crystals => diffraction peaks
 powder => diffraction rings
 multiple crystals => spotted rings



graphene also graphite single crystal fcc aluminum polycrystalline also powder graphite pyrolytic

Aluminum diffraction rings



For our electron and optical diffraction experiments the wavelength is small compared to the lattice constant. Consequently, the wavevector
k = 2 pi / lambda is much longer than the reciprocal lattice spacing 2 pi / a and the Ewald Sphere cuts through many reciprocal lattice points

In our experiments, we only see ZOLZ peaks

Ewald sphere geometry for x-ray diffraction

In contrast to electron and optical diffraction where there are many Bragg peaks on the Ewald sphere, in x-ray diffraction there is usually only one Bragg peak on the Ewald sphere